Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Categories of Operator Modules (Morita Equivalence and Projective Modules) - cover
Categories of Operator Modules (Morita Equivalence and Projective Modules) - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Categories of Operator Modules (Morita Equivalence and Projective Modules)
Disponibilità in 4/5 settimane
63,59 €
-3% 65,56 €
63,59 € 65,56 € -3%
Disp. in 4/5 settimane
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-3% 65,56 € 63,59 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-3% 65,56 € 63,59 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Categories of Operator Modules (Morita Equivalence and Projective Modules) - cover
Chiudi

Promo attive (0)

Descrizione


We employ recent advances in the theory of operator spaces, also known as quantized functional analysis, to provide a context in which one can compare categories of modules over operator algebras that are not necessarily self-adjoint. We focus our attention on the category of Hilbert modules over an operator algebra and on the category of operator modules over an operator algebra. The module operations are assumed to be completely bounded - usually, completely contractive. We develop the notion of a Morita context between two operator algebras $A$ and $B$. This is a system $(A,B,{}_{A}X_{B},{}_{B} Y_{A},(\cdot,\cdot),[\cdot,\cdot])$ consisting of the algebras, two bimodules $_{A}X_{B$ and $_{B}Y_{A}$ and pairings $(\cdot,\cdot)$ and $[\cdot,\cdot]$ that induce (complete) isomorphisms between the (balanced) Haagerup tensor products, $X \otimes_{hB} {} Y$ and $Y \otimes_{hA} {} X$, and the algebras, $A$ and $B$, respectively.Thus, formally, a Morita context is the same as that which appears in pure ring theory. The subtleties of the theory lie in the interplay between the pure algebra and the operator space geometry. Our analysis leads to viable notions of projective operator modules and dual operator modules. We show that two C$^*$-algebras are Morita equivalent in our sense if and only if they are $C^{\ast}$-algebraically strong Morita equivalent, and moreover the equivalence bimodules are the same. The distinctive features of the non-self-adjoint theory are illuminated through a number of examples drawn from complex analysis and the theory of incidence algebras over topological partial orders. Finally, an appendix provides links to the literature that developed since this Memoir was accepted for publication.
Leggi di più Leggi di meno

Dettagli

Memoirs of the American Mathematical Society
1999
Paperback / softback
Testo in English
9780821819166
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore