Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Computer-Aided Detection of Architectural Distortion in Prior Mammograms of Interval Cancer - Shantanu Banik,Rangaraj Rangayyan,J.E. Leo Desautels - cover
Computer-Aided Detection of Architectural Distortion in Prior Mammograms of Interval Cancer - Shantanu Banik,Rangaraj Rangayyan,J.E. Leo Desautels - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Computer-Aided Detection of Architectural Distortion in Prior Mammograms of Interval Cancer
Attualmente non disponibile
59,80 €
59,80 €
Attualmente non disp.
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
59,80 €
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
59,80 €
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Computer-Aided Detection of Architectural Distortion in Prior Mammograms of Interval Cancer - Shantanu Banik,Rangaraj Rangayyan,J.E. Leo Desautels - cover
Chiudi

Promo attive (0)

Descrizione


Architectural distortion is an important and early sign of breast cancer, but because of its subtlety, it is a common cause of false-negative findings on screening mammograms. Screening mammograms obtained prior to the detection of cancer could contain subtle signs of early stages of breast cancer, in particular, architectural distortion. This book presents image processing and pattern recognition techniques to detect architectural distortion in prior mammograms of interval-cancer cases. The methods are based upon Gabor filters, phase portrait analysis, procedures for the analysis of the angular spread of power, fractal analysis, Laws' texture energy measures derived from geometrically transformed regions of interest (ROIs), and Haralick's texture features. With Gabor filters and phase-portrait analysis, 4,224 ROIs were automatically obtained from 106 prior mammograms of 56 interval-cancer cases, including 301 true-positive ROIs related to architectural distortion, and from 52 mammograms of 13 normal cases. For each ROI, the fractal dimension, the entropy of the angular spread of power, 10 Laws' texture energy measures, and Haralick's 14 texture features were computed. The areas under the receiver operating characteristic (ROC) curves obtained using the features selected by stepwise logistic regression and the leave-one-image-out method are 0.77 with the Bayesian classifier, 0.76 with Fisher linear discriminant analysis, and 0.79 with a neural network classifier. Free-response ROC analysis indicated sensitivities of 0.80 and 0.90 at 5.7 and 8.8 false positives (FPs) per image, respectively, with the Bayesian classifier and the leave-one-image-out method. The present study has demonstrated the ability to detect early signs of breast cancer 15 months ahead of the time of clinical diagnosis, on the average, for interval-cancer cases, with a sensitivity of 0.8 at 5.7 FP/image. The presented computer-aided detection techniques, dedicated to accurate detection and localization of architectural distortion, could lead to efficient detection of early and subtle signs of breast cancer at pre-mass-formation stages.
Leggi di più Leggi di meno

Dettagli

Synthesis Lectures on Biomedical Engineering
2013
Paperback / softback
193 p.
Testo in English
235 x 187 mm
9781627050821
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore