Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Content-based Retrieval of Medical Images: Landmarking, Indexing, and Relevance Feedback - Mazzoncini de Azevedo-Marques,Rangaraj Rangayyan - cover
Content-based Retrieval of Medical Images: Landmarking, Indexing, and Relevance Feedback - Mazzoncini de Azevedo-Marques,Rangaraj Rangayyan - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Content-based Retrieval of Medical Images: Landmarking, Indexing, and Relevance Feedback
Attualmente non disponibile
53,34 €
53,34 €
Attualmente non disp.
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
53,34 €
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
53,34 €
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Content-based Retrieval of Medical Images: Landmarking, Indexing, and Relevance Feedback - Mazzoncini de Azevedo-Marques,Rangaraj Rangayyan - cover
Chiudi

Promo attive (0)

Descrizione


Content-based image retrieval (CBIR) is the process of retrieval of images from a database that are similar to a query image, using measures derived from the images themselves, rather than relying on accompanying text or annotation. To achieve CBIR, the contents of the images need to be characterized by quantitative features; the features of the query image are compared with the features of each image in the database and images having high similarity with respect to the query image are retrieved and displayed. CBIR of medical images is a useful tool and could provide radiologists with assistance in the form of a display of relevant past cases. One of the challenging aspects of CBIR is to extract features from the images to represent their visual, diagnostic, or application-specific information content. In this book, methods are presented for preprocessing, segmentation, landmarking, feature extraction, and indexing of mammograms for CBIR. The preprocessing steps include anisotropic diffusion and the Wiener filter to remove noise and perform image enhancement. Techniques are described for segmentation of the breast and fibroglandular disk, including maximum entropy, a moment-preserving method, and Otsu's method. Image processing techniques are described for automatic detection of the nipple and the edge of the pectoral muscle via analysis in the Radon domain. By using the nipple and the pectoral muscle as landmarks, mammograms are divided into their internal, external, upper, and lower parts for further analysis. Methods are presented for feature extraction using texture analysis, shape analysis, granulometric analysis, moments, and statistical measures. The CBIR system presented provides options for retrieval using the Kohonen self-organizing map and the k-nearest-neighbor method. Methods are described for inclusion of expert knowledge to reduce the semantic gap in CBIR, including the query point movement method for relevance feedback (RFb). Analysis of performance is described in terms of precision, recall, and relevance-weighted precision of retrieval. Results of application to a clinical database of mammograms are presented, including the input of expert radiologists into the CBIR and RFb processes. Models are presented for integration of CBIR and computer-aided diagnosis (CAD) with a picture archival and communication system (PACS) for efficient workflow in a hospital.
Leggi di più Leggi di meno

Dettagli

Synthesis Lectures on Biomedical Engineering
2013
Paperback / softback
143 p.
Testo in English
235 x 187 mm
9781627051415
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore