Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Deep Learning for Computer Architects - Brandon Reagen,Robert Adolf,Paul Whatmough - cover
Deep Learning for Computer Architects - Brandon Reagen,Robert Adolf,Paul Whatmough - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Deep Learning for Computer Architects
Disponibilità in 10 giorni lavorativi
76,31 €
-5% 80,33 €
76,31 € 80,33 € -5%
Disp. in 10 gg
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-5% 80,33 € 76,31 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-5% 80,33 € 76,31 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Deep Learning for Computer Architects - Brandon Reagen,Robert Adolf,Paul Whatmough - cover
Chiudi

Promo attive (0)

Descrizione


Machine learning, and specifically deep learning, has been hugely disruptive in many fields of computer science. The success of deep learning techniques in solving notoriously difficult classification and regression problems has resulted in their rapid adoption in solving real-world problems. The emergence of deep learning is widely attributed to a virtuous cycle whereby fundamental advancements in training deeper models were enabled by the availability of massive datasets and high-performance computer hardware. This text serves as a primer for computer architects in a new and rapidly evolving field. We review how machine learning has evolved since its inception in the 1960s and track the key developments leading up to the emergence of the powerful deep learning techniques that emerged in the last decade. Next we review representative workloads, including the most commonly used datasets and seminal networks across a variety of domains. In addition to discussing the workloads themselves, we also detail the most popular deep learning tools and show how aspiring practitioners can use the tools with the workloads to characterize and optimize DNNs. The remainder of the book is dedicated to the design and optimization of hardware and architectures for machine learning. As high-performance hardware was so instrumental in the success of machine learning becoming a practical solution, this chapter recounts a variety of optimizations proposed recently to further improve future designs. Finally, we present a review of recent research published in the area as well as a taxonomy to help readers understand how various contributions fall in context.
Leggi di più Leggi di meno

Dettagli

Synthesis Lectures on Computer Architecture
2017
Hardback
123 p.
Testo in English
235 x 190 mm
9781681732190
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore