Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Differential Geometry Of Warped Product Manifolds And Submanifolds - Bang-Yen Chen - cover
Differential Geometry Of Warped Product Manifolds And Submanifolds - Bang-Yen Chen - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Differential Geometry Of Warped Product Manifolds And Submanifolds
Disponibilità in 4/5 settimane
157,78 €
-6% 167,85 €
157,78 € 167,85 € -6%
Disp. in 4/5 settimane
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-6% 167,85 € 157,78 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-6% 167,85 € 157,78 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Differential Geometry Of Warped Product Manifolds And Submanifolds - Bang-Yen Chen - cover
Chiudi

Promo attive (0)

Descrizione


A warped product manifold is a Riemannian or pseudo-Riemannian manifold whose metric tensor can be decomposed into a Cartesian product of the y geometry and the x geometry - except that the x-part is warped, that is, it is rescaled by a scalar function of the other coordinates y. The notion of warped product manifolds plays very important roles not only in geometry but also in mathematical physics, especially in general relativity. In fact, many basic solutions of the Einstein field equations, including the Schwarzschild solution and the Robertson-Walker models, are warped product manifolds.The first part of this volume provides a self-contained and accessible introduction to the important subject of pseudo-Riemannian manifolds and submanifolds. The second part presents a detailed and up-to-date account on important results of warped product manifolds, including several important spacetimes such as Robertson-Walker's and Schwarzschild's.The famous John Nash's embedding theorem published in 1956 implies that every warped product manifold can be realized as a warped product submanifold in a suitable Euclidean space. The study of warped product submanifolds in various important ambient spaces from an extrinsic point of view was initiated by the author around the beginning of this century.The last part of this volume contains an extensive and comprehensive survey of numerous important results on the geometry of warped product submanifolds done during this century by many geometers.
Leggi di più Leggi di meno

Dettagli

2017
Hardback
516 p.
Testo in English
9789813208926
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore