Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Elliptic Systems of Phase Transition Type - Nicholas D. Alikakos,Giorgio Fusco,Panayotis Smyrnelis - cover
Elliptic Systems of Phase Transition Type - Nicholas D. Alikakos,Giorgio Fusco,Panayotis Smyrnelis - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Elliptic Systems of Phase Transition Type
Disponibilità in 10 giorni lavorativi
88,82 €
-6% 94,49 €
88,82 € 94,49 € -6%
Disp. in 10 gg
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-6% 94,49 € 88,82 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-6% 94,49 € 88,82 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Elliptic Systems of Phase Transition Type - Nicholas D. Alikakos,Giorgio Fusco,Panayotis Smyrnelis - cover
Chiudi

Promo attive (0)

Descrizione


This book focuses on the vector Allen-Cahn equation, which models coexistence of three or more phases and is related to Plateau complexes - non-orientable objects with a stratified structure. The minimal solutions of the vector equation exhibit an analogous structure not present in the scalar Allen-Cahn equation, which models coexistence of two phases and is related to minimal surfaces. The 1978 De Giorgi conjecture for the scalar problem was settled in a series of papers: Ghoussoub and Gui (2d), Ambrosio and Cabre (3d), Savin (up to 8d), and del Pino, Kowalczyk and Wei (counterexample for 9d and above). This book extends, in various ways, the Caffarelli-Cordoba density estimates that played a major role in Savin's proof. It also introduces an alternative method for obtaining pointwise estimates. Key features and topics of this self-contained, systematic exposition include: * Resolution of the structure of minimal solutions in the equivariant class, (a) for general point groups, and (b) for general discrete reflection groups, thus establishing the existence of previously unknown lattice solutions. * Preliminary material beginning with the stress-energy tensor, via which monotonicity formulas, and Hamiltonian and Pohozaev identities are developed, including a self-contained exposition of the existence of standing and traveling waves. * Tools that allow the derivation of general properties of minimizers, without any assumptions of symmetry, such as a maximum principle or density and pointwise estimates. * Application of the general tools to equivariant solutions rendering exponential estimates, rigidity theorems and stratification results. This monograph is addressed to readers, beginning from the graduate level, with an interest in any of the following: differential equations - ordinary or partial; nonlinear analysis; the calculus of variations; the relationship of minimal surfaces to diffuse interfaces; or the applied mathematics of materials science.
Leggi di più Leggi di meno

Dettagli

Progress in Nonlinear Differential Equations and Their Applications
2019
Hardback
343 p.
Testo in English
235 x 155 mm
699 gr.
9783319905716
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore