Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Fourier Restriction for Hypersurfaces in Three Dimensions and Newton Polyhedra (AM-194) - Isroil A. Ikromov,Detlef Muller - cover
Fourier Restriction for Hypersurfaces in Three Dimensions and Newton Polyhedra (AM-194) - Isroil A. Ikromov,Detlef Muller - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Fourier Restriction for Hypersurfaces in Three Dimensions and Newton Polyhedra (AM-194)
Attualmente non disponibile
76,34 €
-7% 82,09 €
76,34 € 82,09 € -7%
Attualmente non disp.
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-7% 82,09 € 76,34 €
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-7% 82,09 € 76,34 €
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Fourier Restriction for Hypersurfaces in Three Dimensions and Newton Polyhedra (AM-194) - Isroil A. Ikromov,Detlef Muller - cover
Chiudi

Promo attive (0)

Descrizione


This is the first book to present a complete characterization of Stein-Tomas type Fourier restriction estimates for large classes of smooth hypersurfaces in three dimensions, including all real-analytic hypersurfaces. The range of Lebesgue spaces for which these estimates are valid is described in terms of Newton polyhedra associated to the given surface. Isroil Ikromov and Detlef Muller begin with Elias M. Stein's concept of Fourier restriction and some relations between the decay of the Fourier transform of the surface measure and Stein-Tomas type restriction estimates. Varchenko's ideas relating Fourier decay to associated Newton polyhedra are briefly explained, particularly the concept of adapted coordinates and the notion of height. It turns out that these classical tools essentially suffice already to treat the case where there exist linear adapted coordinates, and thus Ikromov and Muller concentrate on the remaining case. Here the notion of r-height is introduced, which proves to be the right new concept. They then describe decomposition techniques and related stopping time algorithms that allow to partition the given surface into various pieces, which can eventually be handled by means of oscillatory integral estimates. Different interpolation techniques are presented and used, from complex to more recent real methods by Bak and Seeger. Fourier restriction plays an important role in several fields, in particular in real and harmonic analysis, number theory, and PDEs. This book will interest graduate students and researchers working in such fields.
Leggi di più Leggi di meno

Dettagli

Annals of Mathematics Studies
2016
Paperback / softback
272 p.
Testo in English
235 x 152 mm
397 gr.
9780691170558
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore