Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Functional Networks with Applications: A Neural-Based Paradigm - Enrique Castillo,Angel Cobo,Jose Antonio Gutierrez - cover
Functional Networks with Applications: A Neural-Based Paradigm - Enrique Castillo,Angel Cobo,Jose Antonio Gutierrez - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Functional Networks with Applications: A Neural-Based Paradigm
Attualmente non disponibile
118,43 €
-6% 125,99 €
118,43 € 125,99 € -6%
Attualmente non disp.
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-6% 125,99 € 118,43 €
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-6% 125,99 € 118,43 €
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Functional Networks with Applications: A Neural-Based Paradigm - Enrique Castillo,Angel Cobo,Jose Antonio Gutierrez - cover
Chiudi

Promo attive (0)

Descrizione


Artificial neural networks have been recognized as a powerful tool to learn and reproduce systems in various fields of applications. Neural net- works are inspired by the brain behavior and consist of one or several layers of neurons, or computing units, connected by links. Each artificial neuron receives an input value from the input layer or the neurons in the previ- ous layer. Then it computes a scalar output from a linear combination of the received inputs using a given scalar function (the activation function), which is assumed the same for all neurons. One of the main properties of neural networks is their ability to learn from data. There are two types of learning: structural and parametric. Structural learning consists of learning the topology of the network, that is, the number of layers, the number of neurons in each layer, and what neurons are connected. This process is done by trial and error until a good fit to the data is obtained. Parametric learning consists of learning the weight values for a given topology of the network. Since the neural functions are given, this learning process is achieved by estimating the connection weights based on the given information. To this aim, an error function is minimized using several well known learning methods, such as the backpropagation algorithm. Unfortunately, for these methods: (a) The function resulting from the learning process has no physical or engineering interpretation. Thus, neural networks are seen as black boxes.
Leggi di più Leggi di meno

Dettagli

The Springer International Series in Engineering and Computer Science
1998
Hardback
309 p.
Testo in English
235 x 155 mm
1410 gr.
9780792383321
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore