Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Fundamentals of Finslerian Diffusion with Applications - P. L. Antonelli,Tomasz Zastawniak - cover
Fundamentals of Finslerian Diffusion with Applications - P. L. Antonelli,Tomasz Zastawniak - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Fundamentals of Finslerian Diffusion with Applications
Attualmente non disponibile
148,04 €
-6% 157,49 €
148,04 € 157,49 € -6%
Attualmente non disp.
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-6% 157,49 € 148,04 €
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-6% 157,49 € 148,04 €
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Fundamentals of Finslerian Diffusion with Applications - P. L. Antonelli,Tomasz Zastawniak - cover
Chiudi

Promo attive (0)

Descrizione


The erratic motion of pollen grains and other tiny particles suspended in liquid is known as Brownian motion, after its discoverer, Robert Brown, a botanist who worked in 1828, in London. He turned over the problem of why this motion occurred to physicists who were investigating kinetic theory and thermodynamics; at a time when the existence of molecules had yet to be established. In 1900, Henri Poincare lectured on this topic to the 1900 International Congress of Physicists, in Paris [Wic95]. At this time, Louis Bachelier, a thesis student of Poincare, made a monumental breakthrough with his Theory of Stock Market Fluctuations, which is still studied today, [Co064]. Norbert Wiener (1923), who was first to formulate a rigorous concept of the Brownian path, is most often cited by mathematicians as the father of the subject, while physicists will cite A. Einstein (1905) and M. Smoluchowski. Both considered Markov diffusions and realized that Brownian behaviour nd could be formulated in terms of parabolic 2 order linear p. d. e. 'so Further- more, from this perspective, the covariance of changes in position could be allowed to depend on the position itself, according to the invariant form of the diffusion introduced by Kolmogorov in 1937, [KoI37]. Thus, any time- homogeneous Markov diffusion could be written in terms of the Laplacian, intrinsically given by the symbol (covariance) of the p. d. e. , plus a drift vec- tor. The theory was further advanced in 1949, when K.
Leggi di più Leggi di meno

Dettagli

Fundamental Theories of Physics
1998
Hardback
205 p.
Testo in English
235 x 155 mm
500 gr.
9780792355113
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore