Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Homological Algebra: In Strongly Non-abelian Settings - Marco Grandis - cover
Homological Algebra: In Strongly Non-abelian Settings - Marco Grandis - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Homological Algebra: In Strongly Non-abelian Settings
Attualmente non disponibile
114,71 €
-6% 122,03 €
114,71 € 122,03 € -6%
Attualmente non disp.
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-6% 122,03 € 114,71 €
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-6% 122,03 € 114,71 €
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Homological Algebra: In Strongly Non-abelian Settings - Marco Grandis - cover
Chiudi

Promo attive (0)

Descrizione


We propose here a study of `semiexact' and `homological' categories as a basis for a generalised homological algebra. Our aim is to extend the homological notions to deeply non-abelian situations, where satellites and spectral sequences can still be studied.This is a sequel of a book on `Homological Algebra, The interplay of homology with distributive lattices and orthodox semigroups', published by the same Editor, but can be read independently of the latter.The previous book develops homological algebra in p-exact categories, i.e. exact categories in the sense of Puppe and Mitchell - a moderate generalisation of abelian categories that is nevertheless crucial for a theory of `coherence' and `universal models' of (even abelian) homological algebra. The main motivation of the present, much wider extension is that the exact sequences or spectral sequences produced by unstable homotopy theory cannot be dealt with in the previous framework.According to the present definitions, a semiexact category is a category equipped with an ideal of `null' morphisms and provided with kernels and cokernels with respect to this ideal. A homological category satisfies some further conditions that allow the construction of subquotients and induced morphisms, in particular the homology of a chain complex or the spectral sequence of an exact couple.Extending abelian categories, and also the p-exact ones, these notions include the usual domains of homology and homotopy theories, e.g. the category of `pairs' of topological spaces or groups; they also include their codomains, since the sequences of homotopy `objects' for a pair of pointed spaces or a fibration can be viewed as exact sequences in a homological category, whose objects are actions of groups on pointed sets.
Leggi di più Leggi di meno

Dettagli

2013
Hardback
356 p.
Testo in English
9789814425919
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore