Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
(Hyper)-Graphs Inference through Convex Relaxations and Move Making Algorithms: Contributions and Applications in Artificial Vision - Nikos Komodakis,Pawan M. Kumar,Nikos Paragios - cover
(Hyper)-Graphs Inference through Convex Relaxations and Move Making Algorithms: Contributions and Applications in Artificial Vision - Nikos Komodakis,Pawan M. Kumar,Nikos Paragios - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
(Hyper)-Graphs Inference through Convex Relaxations and Move Making Algorithms: Contributions and Applications in Artificial Vision
Disponibilità in 10 giorni lavorativi
119,79 €
119,79 €
Disp. in 10 gg
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
119,79 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
119,79 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
(Hyper)-Graphs Inference through Convex Relaxations and Move Making Algorithms: Contributions and Applications in Artificial Vision - Nikos Komodakis,Pawan M. Kumar,Nikos Paragios - cover
Chiudi

Promo attive (0)

Descrizione


Computational visual perception seeks to reproduce human vision through the combination of visual sensors, artificial intelligence, and computing. To this end, computer vision tasks are often reformulated as mathematical inference problems where 'the objective is to determine the set of parameters corresponding to the lowest potential of a task-specific objective function. Graphical models have been the most popular formulation in the field over the past two decades where the problem is viewed as a discrete assignment labelling one. Modularity, scalability, and portability are the main strengths of these methods which once combined with efficient inference algorithms they could lead to state of the art results. This monograph focuses on the inference component of the problem and in particular discusses in a systematic manner the most commonly used optimization principles in the context of graphical models. It looks at inference over low rank models (interactions between variables are constrained to pairs) as well as higher order ones (arbitrary set of variables determine hyper-cliques on Which constraints are introduced)rand seeks a concise, self-contained presentation of prior art as well as- the presentation of the current state of the art methods in the field.
Leggi di più Leggi di meno

Dettagli

Foundations and Trends (R) in Computer Graphics and Vision
2016
Paperback / softback
118 p.
Testo in English
234 x 156 mm
178 gr.
9781680831382
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore