Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Introduction to Global Analysis: Minimal Surfaces in Riemannian Manifolds - John Douglas Moore - cover
Introduction to Global Analysis: Minimal Surfaces in Riemannian Manifolds - John Douglas Moore - cover
Dati e Statistiche
Wishlist Salvato in 1 lista dei desideri
Introduction to Global Analysis: Minimal Surfaces in Riemannian Manifolds
Disponibilità in 4/5 settimane
95,98 €
-3% 98,95 €
95,98 € 98,95 € -3%
Disp. in 4/5 settimane
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-3% 98,95 € 95,98 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-3% 98,95 € 95,98 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Introduction to Global Analysis: Minimal Surfaces in Riemannian Manifolds - John Douglas Moore - cover
Chiudi

Promo attive (0)

Descrizione


During the last century, global analysis was one of the main sources of interaction between geometry and topology. One might argue that the core of this subject is Morse theory, according to which the critical points of a generic smooth proper function on a manifold $M$ determine the homology of the manifold. Morse envisioned applying this idea to the calculus of variations, including the theory of periodic motion in classical mechanics, by approximating the space of loops on $M$ by a finite-dimensional manifold of high dimension. Palais and Smale reformulated Morse's calculus of variations in terms of infinite-dimensional manifolds, and these infinite-dimensional manifolds were found useful for studying a wide variety of nonlinear PDEs. This book applies infinite-dimensional manifold theory to the Morse theory of closed geodesics in a Riemannian manifold. It then describes the problems encountered when extending this theory to maps from surfaces instead of curves. It treats critical point theory for closed parametrized minimal surfaces in a compact Riemannian manifold, establishing Morse inequalities for perturbed versions of the energy function on the mapping space. It studies the bubbling which occurs when the perturbation is turned off, together with applications to the existence of closed minimal surfaces. The Morse-Sard theorem is used to develop transversality theory for both closed geodesics and closed minimal surfaces. This book is based on lecture notes for graduate courses on ``Topics in Differential Geometry'', taught by the author over several years. The reader is assumed to have taken basic graduate courses in differential geometry and algebraic topology.
Leggi di più Leggi di meno

Dettagli

Graduate Studies in Mathematics
2018
Hardback
368 p.
Testo in English
254 x 178 mm
9781470429508
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore