Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Kac Algebras Arising from Composition of Subfactors: General Theory and Classification - cover
Kac Algebras Arising from Composition of Subfactors: General Theory and Classification - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Kac Algebras Arising from Composition of Subfactors: General Theory and Classification
Disponibilità in 4/5 settimane
87,66 €
-3% 90,37 €
87,66 € 90,37 € -3%
Disp. in 4/5 settimane
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-3% 90,37 € 87,66 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-3% 90,37 € 87,66 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Kac Algebras Arising from Composition of Subfactors: General Theory and Classification - cover
Chiudi

Promo attive (0)

Descrizione


We deal with a map $\alpha$ from a finite group $G$ into the automorphism group $Aut({\mathcal L})$ of a factor ${\mathcal L}$ satisfying: $G=N \rtimes H$ is a semi-direct product, the induced map $g \in G \to [\alpha_g] \in Out({\mathcal L})=Aut({\mathcal L})/Int({\mathcal L})$ is an injective homomorphism, and the restrictions $\alpha\!\!\mid_N,\alpha\!\!\mid_H$ are genuine actions of the subgroups on the factor ${\mathcal L}$. The pair ${\mathcal M}={\mathcal L} \rtimes_{\alpha} H \supseteq {\mathcal N}={\mathcal L}^{\alpha\mid_N}$ (of the crossed product ${\mathcal L} \rtimes_{\alpha} H$ and the fixed-point algebra ${\mathcal L}^{\alpha\mid_N}$) gives us an irreducible inclusion of factors with Jones index $\ No. G$. The inclusion ${\mathcal M} \supseteq {\mathcal N}$ is of depth $2$ and hence known to correspond to a Kac algebra of dimension $\ No. G$.A Kac algebra arising in this way is investigated in detail, and in fact the relevant multiplicative unitary (satisfying the pentagon equation) is described. We introduce and analyze a certain cohomology group (denoted by $H^2((N,H),{\mathbf T})$) providing complete information on the Kac algebra structure, and we construct an abundance of non-trivial examples by making use of various cocycles. The operator algebraic meaning of this cohomology group is clarified, and some related topics are also discussed. Sector technique enables us to establish structure results for Kac algebras with certain prescribed underlying algebra structure.They guarantee that 'most' Kac algebras of low dimension (say less than $60$) actually arise from inclusions of the form ${\mathcal L} \rtimes_{\alpha} H \supseteq {\mathcal L}^{\alpha\mid_N}$, and consequently their classification can be carried out by determining $H^2((N,H),{\mathbf T})$. Among other things we indeed classify Kac algebras of dimension $16$ and $24$, which (together with previously known results) gives rise to the complete classification of Kac algebras of dimension up to $31$. Partly to simplify classification procedure and hopefully for its own sake, we also study 'group extensions' of general (finite-dimensional) Kac algebras with some discussions on related topics.
Leggi di più Leggi di meno

Dettagli

Memoirs of the American Mathematical Society
2002
Paperback / softback
Testo in English
9780821829356
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore