Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Keras 2.x Projects: 9 projects demonstrating faster experimentation of neural network and deep learning applications using Keras - Giuseppe Ciaburro - cover
Keras 2.x Projects: 9 projects demonstrating faster experimentation of neural network and deep learning applications using Keras - Giuseppe Ciaburro - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Keras 2.x Projects: 9 projects demonstrating faster experimentation of neural network and deep learning applications using Keras
Disponibilità in 10 giorni lavorativi
36,74 €
36,74 €
Disp. in 10 gg
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
36,74 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
36,74 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Keras 2.x Projects: 9 projects demonstrating faster experimentation of neural network and deep learning applications using Keras - Giuseppe Ciaburro - cover
Chiudi

Promo attive (0)

Descrizione


Demonstrate fundamentals of Deep Learning and neural network methodologies using Keras 2.x Key Features Experimental projects showcasing the implementation of high-performance deep learning models with Keras. Use-cases across reinforcement learning, natural language processing, GANs and computer vision. Build strong fundamentals of Keras in the area of deep learning and artificial intelligence. Book DescriptionKeras 2.x Projects explains how to leverage the power of Keras to build and train state-of-the-art deep learning models through a series of practical projects that look at a range of real-world application areas. To begin with, you will quickly set up a deep learning environment by installing the Keras library. Through each of the projects, you will explore and learn the advanced concepts of deep learning and will learn how to compute and run your deep learning models using the advanced offerings of Keras. You will train fully-connected multilayer networks, convolutional neural networks, recurrent neural networks, autoencoders and generative adversarial networks using real-world training datasets. The projects you will undertake are all based on real-world scenarios of all complexity levels, covering topics such as language recognition, stock volatility, energy consumption prediction, faster object classification for self-driving vehicles, and more. By the end of this book, you will be well versed with deep learning and its implementation with Keras. You will have all the knowledge you need to train your own deep learning models to solve different kinds of problems. What you will learn Apply regression methods to your data and understand how the regression algorithm works Understand the basic concepts of classification methods and how to implement them in the Keras environment Import and organize data for neural network classification analysis Learn about the role of rectified linear units in the Keras network architecture Implement a recurrent neural network to classify the sentiment of sentences from movie reviews Set the embedding layer and the tensor sizes of a network Who this book is forIf you are a data scientist, machine learning engineer, deep learning practitioner or an AI engineer who wants to build speedy intelligent applications with minimal lines of codes, then this book is the best fit for you. Sound knowledge of machine learning and basic familiarity with Keras library would be useful.
Leggi di più Leggi di meno

Dettagli

2018
Paperback / softback
394 p.
Testo in English
92 x 75 mm
9781789536645
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore