Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Knowledge-intensive Subgroup Mining: Techniques for Automatic and Interactive Discovery
Disponibilità in 4/5 settimane
37,18 €
-5% 39,14 €
37,18 € 39,14 € -5%
Disp. in 4/5 settimane
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-5% 39,14 € 37,18 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-5% 39,14 € 37,18 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Chiudi

Promo attive (0)

Descrizione


Subgroup mining is a powerful and broadly applicable data mining approach: In general, the goal is to efficiently discover novel, potentially useful and ultimately interesting knowledge given by subgroup patterns. However, in real-world situations these requirements often cannot be fulfilled, e.g., if the applied methods do not scale for large data sets, if too many results are presented, or if many of the discovered patterns are already known to the user. This work proposes a combination of several techniques in order to cope with the sketched problems: Concerning automatic methods we present the novel SD-Map algorithm that is fast and effective. We describe interactive techniques for subgroup introspection and analysis, and we present advanced visualization methods that can be used for subgroup optimization, comparison and exploration. Furthermore, we propose to include several classes and types of background knowledge into the mining process. The techniques are combined into a knowledge-intensive process supporting both automatic and interactive methods for subgroup mining. The evaluation consists of two parts: With respect to objective evaluation criteria (efficiency and effectiveness), we provide a thorough experimental evaluation using synthetic data demonstrating the benefit of the presented methods. Subjective evaluation criteria include the user acceptance, the benefit, and finally the interestingness of the results. The approach has been successfully implemented in medical and technical applications, for which we present five case studies using real-world data.
Leggi di più Leggi di meno

Dettagli

Dissertations in Artificial Intelligence: Infix
2007
Paperback / softback
214 p.
Testo in English
9781586037260
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore