Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Learning and Decision-Making from Rank Data - Lirong Xia - cover
Learning and Decision-Making from Rank Data - Lirong Xia - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Learning and Decision-Making from Rank Data
Disponibilità in 10 giorni lavorativi
66,46 €
-3% 68,52 €
66,46 € 68,52 € -3%
Disp. in 10 gg
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-3% 68,52 € 66,46 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-3% 68,52 € 66,46 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Learning and Decision-Making from Rank Data - Lirong Xia - cover
Chiudi

Promo attive (0)

Descrizione


The ubiquitous challenge of learning and decision-making from rank data arises in situations where intelligent systems collect preference and behavior data from humans, learn from the data, and then use the data to help humans make efficient, effective, and timely decisions. Often, such data are represented by rankings. This book surveys some recent progress toward addressing the challenge from the considerations of statistics, computation, and socio-economics. We will cover classical statistical models for rank data, including random utility models, distance-based models, and mixture models. We will discuss and compare classical and state of-the-art algorithms, such as algorithms based on Minorize-Majorization (MM), Expectation-Maximization (EM), Generalized Method-of-Moments (GMM), rank breaking, and tensor decomposition. We will also introduce principled Bayesian preference elicitation frameworks for collecting rank data. Finally, we will examine socio-economic aspects of statistically desirable decision-making mechanisms, such as Bayesian estimators. This book can be useful in three ways: (1) for theoreticians in statistics and machine learning to better understand the considerations and caveats of learning from rank data, compared to learning from other types of data, especially cardinal data; (2) for practitioners to apply algorithms covered by the book for sampling, learning, and aggregation; and (3) as a textbook for graduate students or advanced undergraduate students to learn about the field. This book requires that the reader has basic knowledge in probability, statistics, and algorithms. Knowledge in social choice would also help but is not required.
Leggi di più Leggi di meno

Dettagli

Synthesis Lectures on Artificial Intelligence and Machine Learning
2019
Paperback / softback
159 p.
Testo in English
235 x 190 mm
9781681734408
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore