Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Multivariate Kernel Smoothing and Its Applications - Jose E. Chacon,Tarn Duong - cover
Multivariate Kernel Smoothing and Its Applications - Jose E. Chacon,Tarn Duong - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Multivariate Kernel Smoothing and Its Applications
Disponibilità in 5 giorni lavorativi
83,32 €
-6% 88,64 €
83,32 € 88,64 € -6%
Disp. in 5 gg lavorativi
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-6% 88,64 € 83,32 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-6% 88,64 € 83,32 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Multivariate Kernel Smoothing and Its Applications - Jose E. Chacon,Tarn Duong - cover
Chiudi

Promo attive (0)

Descrizione


Kernel smoothing has greatly evolved since its inception to become an essential methodology in the data science tool kit for the 21st century. Its widespread adoption is due to its fundamental role for multivariate exploratory data analysis, as well as the crucial role it plays in composite solutions to complex data challenges. Multivariate Kernel Smoothing and Its Applications offers a comprehensive overview of both aspects. It begins with a thorough exposition of the approaches to achieve the two basic goals of estimating probability density functions and their derivatives. The focus then turns to the applications of these approaches to more complex data analysis goals, many with a geometric/topological flavour, such as level set estimation, clustering (unsupervised learning), principal curves, and feature significance. Other topics, while not direct applications of density (derivative) estimation but sharing many commonalities with the previous settings, include classification (supervised learning), nearest neighbour estimation, and deconvolution for data observed with error. For a data scientist, each chapter contains illustrative Open data examples that are analysed by the most appropriate kernel smoothing method. The emphasis is always placed on an intuitive understanding of the data provided by the accompanying statistical visualisations. For a reader wishing to investigate further the details of their underlying statistical reasoning, a graduated exposition to a unified theoretical framework is provided. The algorithms for efficient software implementation are also discussed. Jose E. Chacon is an associate professor at the Department of Mathematics of the Universidad de Extremadura in Spain. Tarn Duong is a Senior Data Scientist for a start-up which provides short distance carpooling services in France. Both authors have made important contributions to kernel smoothing research over the last couple of decades.
Leggi di più Leggi di meno

Dettagli

Chapman & Hall/CRC Monographs on Statistics and Applied Probability
2018
Hardback
226 p.
Testo in English
235 x 156 mm
590 gr.
9781498763011
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore