Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Neural Networks for Conditional Probability Estimation: Forecasting Beyond Point Predictions - Dirk Husmeier - cover
Neural Networks for Conditional Probability Estimation: Forecasting Beyond Point Predictions - Dirk Husmeier - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Neural Networks for Conditional Probability Estimation: Forecasting Beyond Point Predictions
Attualmente non disponibile
78,95 €
-6% 83,99 €
78,95 € 83,99 € -6%
Attualmente non disp.
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-6% 83,99 € 78,95 €
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-6% 83,99 € 78,95 €
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Neural Networks for Conditional Probability Estimation: Forecasting Beyond Point Predictions - Dirk Husmeier - cover
Chiudi

Promo attive (0)

Descrizione


Conventional applications of neural networks usually predict a single value as a function of given inputs. In forecasting, for example, a standard objective is to predict the future value of some entity of interest on the basis of a time series of past measurements or observations. Typical training schemes aim to minimise the sum of squared deviations between predicted and actual values (the 'targets'), by which, ideally, the network learns the conditional mean of the target given the input. If the underlying conditional distribution is Gaus- sian or at least unimodal, this may be a satisfactory approach. However, for a multimodal distribution, the conditional mean does not capture the relevant features of the system, and the prediction performance will, in general, be very poor. This calls for a more powerful and sophisticated model, which can learn the whole conditional probability distribution. Chapter 1 demonstrates that even for a deterministic system and 'be- nign' Gaussian observational noise, the conditional distribution of a future observation, conditional on a set of past observations, can become strongly skewed and multimodal. In Chapter 2, a general neural network structure for modelling conditional probability densities is derived, and it is shown that a universal approximator for this extended task requires at least two hidden layers. A training scheme is developed from a maximum likelihood approach in Chapter 3, and the performance ofthis method is demonstrated on three stochastic time series in chapters 4 and 5.
Leggi di più Leggi di meno

Dettagli

Perspectives in Neural Computing
1999
Paperback / softback
275 p.
Testo in English
235 x 155 mm
462 gr.
9781852330958
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore