Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Numerical Integration of Space Fractional Partial Differential Equations, Volume 2: Applications from Classical Integer PDEs - Younes Salehi,William E. Schiesser - cover
Numerical Integration of Space Fractional Partial Differential Equations, Volume 2: Applications from Classical Integer PDEs - Younes Salehi,William E. Schiesser - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Numerical Integration of Space Fractional Partial Differential Equations, Volume 2: Applications from Classical Integer PDEs
Disponibilità in 4/5 settimane
110,00 €
-3% 113,40 €
110,00 € 113,40 € -3%
Disp. in 4/5 settimane
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-3% 113,40 € 110,00 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-3% 113,40 € 110,00 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Numerical Integration of Space Fractional Partial Differential Equations, Volume 2: Applications from Classical Integer PDEs - Younes Salehi,William E. Schiesser - cover
Chiudi

Promo attive (0)

Descrizione


Partial differential equations (PDEs) are one of the most used widely forms of mathematics in science and engineering. PDEs can have partial derivatives with respect to (1) an initial value variable, typically time, and (2) boundary value variables, typically spatial variables. Therefore, two fractional PDEs can be considered, (1) fractional in time (TFPDEs), and (2) fractional in space (SFPDEs). The two volumes are directed to the development and use of SFPDEs, with the discussion divided as: Vol 1: Introduction to Algorithms and Computer Coding in R Vol 2: Applications from Classical Integer PDEs. Various definitions of space fractional derivatives have been proposed. We focus on the Caputo derivative, with occasional reference to the Riemann-Liouville derivative. In the second volume, the emphasis is on applications of SFPDEs developed mainly through the extension of classical integer PDEs to SFPDEs. The example applications are: Fractional diffusion equation with Dirichlet, Neumann and Robin boundary conditions Fisher-Kolmogorov SFPDE Burgers SFPDE Fokker-Planck SFPDE Burgers-Huxley SFPDE Fitzhugh-Nagumo SFPDE. These SFPDEs were selected because they are integer first order in time and integer second order in space. The variation in the spatial derivative from order two (parabolic) to order one (first order hyperbolic) demonstrates the effect of the spatial fractional order with 1 2. All of the example SFPDEs are one dimensional in Cartesian coordinates. Extensions to higher dimensions and other coordinate systems, in principle, follow from the examples in this second volume. The examples start with a statement of the integer PDEs that are then extended to SFPDEs. The format of each chapter is the same as in the first volume. The R routines can be downloaded and executed on a modest computer (R is readily available from the Internet).
Leggi di più Leggi di meno

Dettagli

Synthesis Lectures on Mathematics and Statistics
2017
Hardback
205 p.
Testo in English
235 x 190 mm
9781681732718
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore