Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Online Stochastic Combinatorial Optimization - Pascal Van Hentenryck,Russell Bent - cover
Online Stochastic Combinatorial Optimization - Pascal Van Hentenryck,Russell Bent - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Online Stochastic Combinatorial Optimization
Disponibilità in 4/5 settimane
20,72 €
-10% 23,02 €
20,72 € 23,02 € -10%
Disp. in 4/5 settimane
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-10% 23,02 € 20,72 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-10% 23,02 € 20,72 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Online Stochastic Combinatorial Optimization - Pascal Van Hentenryck,Russell Bent - cover
Chiudi

Promo attive (0)

Descrizione


A framework for online decision making under uncertainty and time constraints, with online stochastic algorithms for implementing the framework, performance guarantees, and demonstrations of a variety of applications. Online decision making under uncertainty and time constraints represents one of the most challenging problems for robust intelligent agents. In an increasingly dynamic, interconnected, and real-time world, intelligent systems must adapt dynamically to uncertainties, update existing plans to accommodate new requests and events, and produce high-quality decisions under severe time constraints. Such online decision-making applications are becoming increasingly common: ambulance dispatching and emergency city-evacuation routing, for example, are inherently online decision-making problems; other applications include packet scheduling for Internet communications and reservation systems. This book presents a novel framework, online stochastic optimization, to address this challenge. This framework assumes that the distribution of future requests, or an approximation thereof, is available for sampling, as is the case in many applications that make either historical data or predictive models available. It assumes additionally that the distribution of future requests is independent of current decisions, which is also the case in a variety of applications and holds significant computational advantages. The book presents several online stochastic algorithms implementing the framework, provides performance guarantees, and demonstrates a variety of applications. It discusses how to relax some of the assumptions in using historical sampling and machine learning and analyzes different underlying algorithmic problems. And finally, the book discusses the framework's possible limitations and suggests directions for future research.
Leggi di più Leggi di meno

Dettagli

The MIT Press
2009
Paperback / softback
248 p.
Testo in English
229 x 203 mm
431 gr.
9780262513470
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore