Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Positive Definite Functions on Infinite-dimensional Convex Cones - cover
Positive Definite Functions on Infinite-dimensional Convex Cones - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Positive Definite Functions on Infinite-dimensional Convex Cones
Disponibilità in 4/5 settimane
76,49 €
-3% 78,86 €
76,49 € 78,86 € -3%
Disp. in 4/5 settimane
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-3% 78,86 € 76,49 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-3% 78,86 € 76,49 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Positive Definite Functions on Infinite-dimensional Convex Cones - cover
Chiudi

Promo attive (0)

Descrizione


This memoir is devoted to the study of positive definite functions on convex subsets of finite- or infinite-dimensional vector spaces, and to the study of representations of convex cones by positive operators on Hilbert spaces. Given a convex subset $\Omega\sub V$ of a real vector space $V$, we show that a function $\phi\!:\Omega\to\mathbb{R}$ is the Laplace transform of a positive measure $\mu$ on the algebraic dual space $V^*$ if and only if $\phi$ is continuous along line segments and positive definite. If $V$ is a topological vector space and $\Omega\sub V$ an open convex cone, or a convex cone with non-empty interior, we describe sufficient conditions for the existence of a representing measure $\mu$ for $\phi$ on the topological dual space$V$.The results are used to explore continuity properties of positive definite functions on convex cones, and their holomorphic extendibility to positive definite functions on the associated tubes $\Omega+iV\sub V_{\mathbb{C}}$. We also study the interplay between positive definite functions and representations of convex cones, and derive various characterizations of those representations of convex cones on Hilbert spaces which are Laplace transforms of spectral measures. Furthermore, for scalar- or operator-valued positive definite functions which are Laplace transforms, we realize the associated reproducing kernel Hilbert space as an $L^2$-space $L^2(V^*,\mu)$ of vector-valued functions and link the natural translation operators on the reproducing kernel space to multiplication operators on $L^2(V^*,\mu)$, which gives us refined information concerning the norms of these operators.
Leggi di più Leggi di meno

Dettagli

Memoirs of the American Mathematical Society
2003
Paperback / softback
128 p.
Testo in English
9780821832561
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore