Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
The Role of Advection in a Two-Species Competition Model: A Bifurcation Approach - Isabel Averill,King-Yeung Lam,Yuan Lou - cover
The Role of Advection in a Two-Species Competition Model: A Bifurcation Approach - Isabel Averill,King-Yeung Lam,Yuan Lou - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
The Role of Advection in a Two-Species Competition Model: A Bifurcation Approach
Disponibilità in 4/5 settimane
86,54 €
-3% 89,22 €
86,54 € 89,22 € -3%
Disp. in 4/5 settimane
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-3% 89,22 € 86,54 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-3% 89,22 € 86,54 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
The Role of Advection in a Two-Species Competition Model: A Bifurcation Approach - Isabel Averill,King-Yeung Lam,Yuan Lou - cover
Chiudi

Promo attive (0)

Descrizione


The effects of weak and strong advection on the dynamics of reaction-diffusion models have long been studied. In contrast, the role of intermediate advection remains poorly understood. For example, concentration phenomena can occur when advection is strong, providing a mechanism for the coexistence of multiple populations, in contrast with the situation of weak advection where coexistence may not be possible. The transition of the dynamics from weak to strong advection is generally difficult to determine. In this work the authors consider a mathematical model of two competing populations in a spatially varying but temporally constant environment, where both species have the same population dynamics but different dispersal strategies: one species adopts random dispersal, while the dispersal strategy for the other species is a combination of random dispersal and advection upward along the resource gradient. For any given diffusion rates the authors consider the bifurcation diagram of positive steady states by using the advection rate as the bifurcation parameter. This approach enables the authors to capture the change of dynamics from weak advection to strong advection. The authors determine three different types of bifurcation diagrams, depending on the difference of diffusion rates. Some exact multiplicity results about bifurcation points are also presented. The authors' results can unify some previous work and, as a case study about the role of advection, also contribute to the understanding of intermediate (relative to diffusion) advection in reaction-diffusion models.
Leggi di più Leggi di meno

Dettagli

Memoirs of the American Mathematical Society
2017
Paperback / softback
106 p.
Testo in English
254 x 178 mm
9781470422028
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore