Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Self-Regularity: A New Paradigm for Primal-Dual Interior-Point Algorithms - Jiming Peng,Cornelis Roos,Tamas Terlaky - cover
Self-Regularity: A New Paradigm for Primal-Dual Interior-Point Algorithms - Jiming Peng,Cornelis Roos,Tamas Terlaky - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Self-Regularity: A New Paradigm for Primal-Dual Interior-Point Algorithms
Attualmente non disponibile
112,07 €
-6% 119,22 €
112,07 € 119,22 € -6%
Attualmente non disp.
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-6% 119,22 € 112,07 €
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-6% 119,22 € 112,07 €
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Self-Regularity: A New Paradigm for Primal-Dual Interior-Point Algorithms - Jiming Peng,Cornelis Roos,Tamas Terlaky - cover
Chiudi

Promo attive (0)

Descrizione


Research on interior-point methods (IPMs) has dominated the field of mathematical programming for the last two decades. Two contrasting approaches in the analysis and implementation of IPMs are the so-called small-update and large-update methods, although, until now, there has been a notorious gap between the theory and practical performance of these two strategies. This book comes close to bridging that gap, presenting a new framework for the theory of primal-dual IPMs based on the notion of the self-regularity of a function. The authors deal with linear optimization, nonlinear complementarity problems, semidefinite optimization, and second-order conic optimization problems. The framework also covers large classes of linear complementarity problems and convex optimization. The algorithm considered can be interpreted as a path-following method or a potential reduction method. Starting from a primal-dual strictly feasible point, the algorithm chooses a search direction defined by some Newton-type system derived from the self-regular proximity. The iterate is then updated, with the iterates staying in a certain neighborhood of the central path until an approximate solution to the problem is found. By extensively exploring some intriguing properties of self-regular functions, the authors establish that the complexity of large-update IPMs can come arbitrarily close to the best known iteration bounds of IPMs. Researchers and postgraduate students in all areas of linear and nonlinear optimization will find this book an important and invaluable aid to their work.
Leggi di più Leggi di meno

Dettagli

Princeton Series in Applied Mathematics
2002
Paperback / softback
208 p.
Testo in English
235 x 152 mm
28 gr.
9780691091938
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore