Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Spatial Patterns: Higher Order Models in Physics and Mechanics - L.A. Peletier,W.C. Troy - cover
Spatial Patterns: Higher Order Models in Physics and Mechanics - L.A. Peletier,W.C. Troy - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Spatial Patterns: Higher Order Models in Physics and Mechanics
Disponibilità in 10 giorni lavorativi
88,82 €
-6% 94,49 €
88,82 € 94,49 € -6%
Disp. in 10 gg
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-6% 94,49 € 88,82 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-6% 94,49 € 88,82 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Spatial Patterns: Higher Order Models in Physics and Mechanics - L.A. Peletier,W.C. Troy - cover
Chiudi

Promo attive (0)

Descrizione


The study of spatial patterns in extended systems, and their evolution with time, poses challenging questions for physicists and mathematicians alike. Waves on water, pulses in optical fibers, periodic structures in alloys, folds in rock formations, and cloud patterns in the sky: patterns are omnipresent in the world around us. Their variety and complexity make them a rich area of study. In the study of these phenomena an important role is played by well-chosen model equations, which are often simpler than the full equations describing the physical or biological system, but still capture its essential features. Through a thorough analysis of these model equations one hopes to glean a better under- standing of the underlying mechanisms that are responsible for the formation and evolution of complex patterns. Classical model equations have typically been second-order partial differential equations. As an example we mention the widely studied Fisher-Kolmogorov or Allen-Cahn equation, originally proposed in 1937 as a model for the interaction of dispersal and fitness in biological populations. As another example we mention the Burgers equation, proposed in 1939 to study the interaction of diffusion and nonlinear convection in an attempt to understand the phenomenon of turbulence. Both of these are nonlinear second-order diffusion equations.
Leggi di più Leggi di meno

Dettagli

Progress in Nonlinear Differential Equations and Their Applications
2001
Hardback
343 p.
Testo in English
235 x 155 mm
1520 gr.
9780817641108
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore