Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 2, Applications and Future Perspectives - Andrzej Cichocki,Namgil Lee,lvan Oseledets - cover
Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 2, Applications and Future Perspectives - Andrzej Cichocki,Namgil Lee,lvan Oseledets - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 2, Applications and Future Perspectives
Disponibilità in 10 giorni lavorativi
146,10 €
146,10 €
Disp. in 10 gg
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
146,10 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
146,10 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 2, Applications and Future Perspectives - Andrzej Cichocki,Namgil Lee,lvan Oseledets - cover
Chiudi

Promo attive (0)

Descrizione


This monograph builds on Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions by discussing tensor network models for super-compressed higher-order representation of data/parameters and cost functions, together with an outline of their applications in machine learning and data analytics. A particular emphasis is on elucidating, through graphical illustrations, that by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volume of data/parameters, thereby alleviating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification, generalized eigenvalue decomposition and in the optimization of deep neural networks. The monograph focuses on tensor train (TT) and Hierarchical Tucker (HT) decompositions and their extensions, and on demonstrating the ability of tensor networks to provide scalable solutions for a variety of otherwise intractable largescale optimization problems. Tensor Networks for Dimensionality Reduction and Large-scale Optimization Parts 1 and 2 can be used as stand-alone texts, or together as a comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions. See also: Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions.
Leggi di più Leggi di meno

Dettagli

Foundations and Trends in Machine Learning
2017
Paperback / softback
256 p.
Testo in English
9781680832761
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore